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Physics Skills Workshops 
 

Inverse Square Laws 
 
The purpose of this weeks exercise is to take a look at a very common physical 
situation � the inverse square law � and then solve some simple problems which all 
involve them to some extent. So in addition to seeing how and why inverse square 
laws work, you should remember to put into practice what you�ve learnt so far about 
solving physics problems: understanding the basic principles; drawing diagrams; 
deciding on appropriate assumptions; and only finally doing the maths! 
 
Introduction to Inverse Square Laws 
 
There are a huge number of examples of inverse square laws to be found in physics, 
they are something we recognise and work out without really thinking about it � 
consider this question: 
 
�If you receive a given radiation dose when standing 1m from a radioactive source, 
how much is the dose reduced if you move to 2m from the source?� 
 
The answer is, of course, that the dose reduces by a factor of 4.  Even without 
knowing the details of the radioactivity, how dose is calculated, or how it�s absorbed 
by the body, you know that moving twice as far away reduces the effect by 4. Why? 
Because it�s an inverse square law� 
 
Important note: If you didn�t get that answer, don�t panic! All will become clear� 
 
Isotropic Emission, Conservation of Flux, and Inverse Square Laws 
 
 
Consider a �source� which emits energy at a rate of S units per second (the type of 
source, and the units of S are irrelevant for this�). This situation is shown in the 
diagram below: 
 

 
 
Consider a sphere centred on the source, and surrounding it at a radius of r. If we 
assume the energy flows out isotropically from the source, then the energy received 
at any point on the sphere should be the same. It�s easy to calculate the intensity of 
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the energy (energy/unit area) as it passes through the sphere, it�s just the total 
energy divided by the surface area of the sphere. 
 
Now extend this idea to spheres at different radii - the surface area of each sphere 
increases as r2, so the intensity of the energy (per unit area) must reduce as 1/r2, and 
that�s it � the inverse square law. 
 
So, in summary - Isotropic emission from a point generally results in an inverse 
square law because it mathematically describes the conservation of flux flowing out 
through concentric shells centred on that point.  
 
That �flux� can be many things: 
 

 Gravity 
 Light intensity 
 Electrostatic attraction/repulsion 
 Electromagnetic Radiation 
 Sound 
 Randomly emitted particles (so ionising radiation) 
 

All these situations can be analysed in exactly the same (simple) way. 
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Example 1 � Gravity in orbit 
 
 
The International Space Station (ISS) orbits at an altitude of ~350km above the 
Earth�s surface (Earth�s radius is 6378.2km). What fraction of the surface 
gravitational acceleration, g, is felt at this altitude?  
 
 
 
 
 
 
So all this talk about feeling weightless in space is a bit misleading! Explain this 
apparent confusion. 
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Example 2 � Force between charges 
 
A charge of 8 x 10-18C is placed at (0,2) on the x,y-plane.  
 
Calculate the force, and its direction, experienced by an electron placed at (4,5).  
 
 
 
Where should the electron be moved to so that the force experienced is decreased 
by a factor of three? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What Examples 1 and 2 show us� 
 
These 2 examples show how simple scaling by an inverse square laws works well in 
situations where symmetry can be applied, and you are looking for a relative change.  
 
However, when symmetry is not present, or when absolute levels are important, it 
can be necessary to quantify the flux passing through a specific area at a specific 
distance from the emitting source. 
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Solid angle calculations 
 
The solid angle subtended by an area at a distance from a point emitter can be used 
to calculate the flux received by that area from the emitter. 
 
The solid angle subtended by a surface S is defined as the surface area of a unit 
sphere covered by the surface's projection onto the sphere.  
 
Formally, the solid angle for any shape can be calculated using this formula:  

 
where da is a small area of the shape, and n and r2 define the unit vector and 
distance from the origin. 
 
As you can calculate, the whole sky subtends a solid angle of 4ð steradians. 

 
 
There is a much simpler way to calculate solid angles � called the spherical 
approximation. This assumes that the area A is all equidistant at a distance d from 
the reference point, and orthogonal to the unit vector from the origin. Under this 
approximation, we can state that the solid angle  

2d

A


. 
If you can�t remember this formula, just remember the case for the whole sky, where 

24 dA   and 4 .

A

d

 
 

Knowing the solid angle subtended by an area allows us to calculate what fraction of 
the emitted isotropic flux passes through that area.  
 

emittedarea FF
4




 
 
Where Ù is the solid angle subtended by the area. 
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Example 3 � Temperature of the planets 
 
Estimating the temperature of the planets is a fairly simple calculation. Getting the 
right answer is considerably trickier� 
 
Of course, the biggest effect is the amount of energy each planet receives from the 
Sun, so inverse square laws are fundamental to the calculation. 
 
Step 1 First, calculate the solar energy flux on each planet, in W/m2, assuming the 
Sun radiates energy at a rate of 3.8 x 1026 W, and assuming the solar energy is 
radiated isotropically. 
 
(hint: you need to make a solid angle calculation, with the area of 1m2 at the distance 
of each planet) 
 
 

Planet Mean distance 
from Sun 
(AU1) 

Solar flux 
(W/m2) 

Mercury 0.387  
Venus 0.723  
Earth 1  
Mars 1.524  
Jupiter 5.203  
Saturn 9.54  

 
Step 2 If each planet is in thermal equilibrium, it must be radiating away as much 
energy as it is receiving.  
 
Use Stefan�s law (F = óT4, where ó=5.67x10-8W/m2) combined with your values of F 
calculated above to calculate the expected temperatures of the planets (assuming no 
atmospheric effects) based on the following data.  
 

Planet Mean distance 
from Sun (AU) 

Temperature (K) Actual 
Temperature 

Mercury 0.387  100-700 
Venus 0.723  700 
Earth 1  250-300 
Mars 1.524  120-390 
Jupiter 5.203  110-150 
Saturn 9.54  95 

 
Compare the calculated values and the actual values on a graph, and comment on 
the results you have obtained. 
 
Why is this such a poor model� 
 

(i) the albedo of each planet (fraction of the incident solar radiation reflected) 
is very different � ie 0.06 for Mercury, 0.76 for Venus, 0.4 for Earth 

                                                 
1 One AU (Astronomical Unit) is the mean Earth-Sun distance,  1.495 x 1011m 
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(ii) the presence of an atmosphere dramatically changes the surface 
temperatures of a planet. 

 
These �sub-solar temperatures� you have calculated are essentially the equilibrium 
noontime temperatures on slowly rotating planets with no atmospheres. 
 
 
 
Example 4 � Sound pressure levels 
 
The engines of a jet taking off emit a noise level of ~140 dB at 1m � which is enough 
to destroy your hearing very quickly. How far away do you need to stand to reduce 
the sound level to a more acceptable 85dB, which is about the safe limit for 
prolonged exposure? 
 
 
Hint: Although this is a simple invers-
square law scaling again, this is a 
slightly more complex calculation, as 
you need to know that the dB scale is 
logarithmic (see box to the right) 
 
First calculate the meaning of the 
change from 140 dB to 85dB, re-
expressing this as a simple ratio of the 
sound energy levels. 
 
 
 
 
Now calculate the appropriate distance 
you should move to. 
 

 
 

You need to know how the ear perceives loudness. 
First of all, the ear is very sensitive. The softest audible 
sound has a power of about 0.000000000001 watt/sq. 
meter and the threshold of pain is around 1 watt/sq. 
meter, giving a total range of 120dB. In the second 
place, our judgment of relative levels of loudness is 
somewhat logarithmic. If a sound has 10 times the 
power of a reference (10dB) we hear it as twice as 
loud. If we merely double the power (3dB), the 
difference will be just noticeable.  

[The calculations for the dB relationships I just gave go 
like this; for a 10 to one relationship, the log of 10 is 1, 
and ten times 1 is 10. For the 2 to one relationship, the 
log of 2 is 0.3, and 10 times that is 3. Incidentally, if the 
ratio goes the other way, with the measured value less 
than the reference, we get a negative dB value, 
because the log of 1/10 is -1.] 


